

Access through your institution

Purchase PDF

Solid State Sciences Volume 122, December 2021, 106756

Mössbauer analysis and induction heating evaluation of grapes like FZ@MWCNT towards cancer treatment

Chandi Charan Dey ^a, Ayan Mallick ^a, Abhik Sinha Mahapatra ^b, Madhumita Dalal ^a, Anna Bajorek ^c, Jean-Marc Greneche ^d, Raghumani Singh Ningthoujam ^e, Pabitra Kumar Chakrabarti ^a 은 쩓

Show more 🗸	
🗮 Outline 🛛 😪 Share 🛛 🤧 Cite	
https://doi.org/10.1016/j.solidstatesciences.2021.106756	Get rights and content

Highlights

- γ -Fe₂O₃ is prepared through an unconventional cost-effective technique.
- π conjugate interaction of nanoparticles with that of the MWCNT surface i.e.
 magnetophoresis interaction bond is identified.
- Mössbauer spectrometry at 77 and 300 K confirm the reduction of dipolar interaction to adopt the LRT theory.
- Néel's relaxation makes the dominant position for hyperthermia.
- Inductive heating rate of FZ@MWCNT reflects their high potential for hyperthermia therapy.

Abstract

We have successfully modified the synthesis of γ -Fe₂O₃ and ZnO in a variety of potential matrices, like as multiwall carbon nanotubes (MWCNT) and <u>graphene oxide</u> (GO), referred to as FZ@MWCNT and FZ@MWCNT-GO. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were performed for phase formation and morphological analysis. Phase purity and superparamagnetic environment of maghemite and FZ@MWCNT were investigated by ⁵⁷Fe Mössbauer spectrometry at 77 and 300 K, confirming the reduction of dipolar interaction. Induction heating of γ -Fe₂O₃, FZ@MWCNT and FZ@MWCNT-GO was analysed at various concentrations of nanoparticles to investigate the suitability of this nanocomposite for hyperthermia application. Ironically, the inductive heating rate of FZ@MWCNT at 3 mg/ml concentration is reflecting its high potential for hyperthermia therapy in cancer treatment.

Graphical abstract

Download : Download high-res image (262KB)

FEEDBACK 📿

Keywords

MWCNTs; Graphene oxide; Magnetic properties; Mössbauer analysis; Hyperthermia

Recommended articles

Citing articles (0)

View full text

© 2021 Elsevier Masson SAS. All rights reserved.